Wednesday 15 November 2017

Moving Average Prozess Wiki


Gleitender Durchschnitt In der Statistik. Ein gleitender Durchschnitt. Auch Rolling Average genannt. Bewegter Mittelwert. Walzmittel. Gleitenden zeitlichen Mittelwert. Oder laufender Durchschnitt. Ist ein Typ eines Finite-Impulse-Response-Filters, der verwendet wird, um einen Satz von Datenpunkten zu analysieren, indem eine Reihe von Mittelwerten von verschiedenen Teilmengen des vollständigen Datensatzes erzeugt wird. Bei einer Reihe von Zahlen und einer festen Teilmengengröße wird das erste Element des gleitenden Mittelwertes erhalten, indem der Durchschnitt der anfänglichen festen Teilmenge der Zahlenreihe genommen wird. Dann wird die Teilmenge durch Vorwärtsschieben modifiziert, dh ohne die erste Zahl der Reihe und schließt die nächste Zahl ein, die der ursprünglichen Teilmenge in der Reihe folgt. Dies erzeugt eine neue Teilmenge von Zahlen, die gemittelt wird. Dieser Vorgang wird über die gesamte Datenreihe wiederholt. Die graphische Linie, die alle (festen) Mittel verbindet, ist der gleitende Durchschnitt. Ein gleitender Durchschnitt ist ein Satz von Zahlen, von denen jeder der Mittelwert der entsprechenden Teilmenge eines größeren Satzes von Bezugspunkten ist. Ein gleitender Durchschnitt kann auch ungleiche Gewichte für jeden Datumswert in der Teilmenge verwenden, um bestimmte Werte in der Teilmenge hervorzuheben. Ein gleitender Durchschnitt wird häufig mit Zeitreihendaten verwendet, um kurzfristige Fluktuationen auszugleichen und längerfristige Trends oder Zyklen hervorzuheben. Die Schwelle zwischen Kurzzeit und Langzeit hängt von der Anwendung ab, und die Parameter des gleitenden Durchschnitts werden entsprechend eingestellt. Zum Beispiel wird es oft in der technischen Analyse von Finanzdaten, wie Aktienkurse verwendet. Renditen oder Handelsvolumina. Es wird auch in der Volkswirtschaft verwendet, um das Bruttoinlandsprodukt, die Beschäftigung oder andere makroökonomische Zeitreihen zu untersuchen. Mathematisch ist ein gleitender Durchschnitt eine Art von Faltung und kann daher als ein Beispiel eines bei der Signalverarbeitung verwendeten Tiefpassfilters betrachtet werden. Bei Verwendung mit Nicht-Zeitreihendaten filtert ein gleitender Durchschnitt höherfrequente Komponenten ohne irgendeine spezifische Verbindung zur Zeit, obwohl typischerweise eine Art von Anordnung impliziert wird. Vereinfacht betrachtet, kann es als eine Glättung der Daten betrachtet werden. Einfacher gleitender Durchschnitt Edit In Finanzanwendungen ist ein einfacher gleitender Durchschnitt (SMA) der ungewichtete Mittelwert der vorangegangenen n Datenpunkte. Allerdings wird in der Wissenschaft und Technik der Mittelwert normalerweise aus einer gleichen Anzahl von Daten auf beiden Seiten eines zentralen Wertes genommen. Dies stellt sicher, dass Variationen in dem Mittel mit den Variationen in den Daten ausgerichtet sind, anstatt zeitlich verschoben zu werden. Ein Beispiel eines einfachen, gleich gewichteten laufenden Mittelwertes für eine n-Tage-Stichprobe des Schlusskurses ist der Mittelwert der vorangegangenen n-Tage-Schlusskurse. Wenn diese Preise dann die Formel ist, wird bei der Berechnung aufeinanderfolgender Werte ein neuer Wert in die Summe und ein alter Wert fällt aus, dh eine vollständige Summation jedes Mal ist für diesen einfachen Fall unnötig, Der ausgewählte Zeitraum hängt von der Art der Bewegung von Wie kurz, mittelfristig oder langfristig. Finanziell kann das gleitende Durchschnittsniveau als Unterstützung in einem steigenden Markt oder Widerstand in einem fallenden Markt interpretiert werden. Wenn die verwendeten Daten nicht um den Mittelpunkt zentriert sind, liegt ein einfacher gleitender Durchschnitt hinter dem letzten Datumspunkt um die Hälfte der Probenbreite zurück. Ein Merkmal der SMA ist, dass, wenn die Daten eine periodische Fluktuation haben, dann das Anwenden eines SMA dieser Periode diese Variation beseitigen wird (der Durchschnitt, der immer enthält.) Ein SMA kann auch überproportional beeinflusst werden, indem alte Datenpunkte wegfallen oder neue Daten hereinkommen Ein vollständiger Zyklus). Aber ein vollkommen regelmäßiger Zyklus kommt selten vor. 1 Für eine Reihe von Anwendungen ist es vorteilhaft, die Verschiebung zu vermeiden, die durch die Verwendung nur vergangener Daten induziert wird. Daher kann ein zentraler gleitender Durchschnitt berechnet werden, wobei Daten verwendet werden, die beiderseits des Punktes in der Reihe gleich beabstandet sind, wo der Mittelwert berechnet wird. Dies erfordert die Verwendung einer ungeraden Anzahl von Bezugspunkten im Probenfenster. Kumulierter gleitender Durchschnitt Bearbeiten In einem kumulativen gleitenden Durchschnitt. Kommen die Daten in einem geordneten Datenstrom an und der Statistiker möchte den Durchschnitt aller Daten bis zum aktuellen Bezugspunkt erhalten. Zum Beispiel kann ein Anleger den durchschnittlichen Preis aller Aktien-Transaktionen für eine bestimmte Aktie bis zur aktuellen Zeit wollen. Bei jeder neuen Transaktion kann der Durchschnittspreis zum Zeitpunkt der Transaktion für alle Transaktionen bis zu diesem Zeitpunkt unter Verwendung des kumulativen Durchschnitts, typischerweise eines gleich gewichteten Durchschnitts der Sequenz von i Werten x 1, berechnet werden. X i bis zur aktuellen Zeit: Die brute-force Methode, um dies zu berechnen, wäre, alle Daten zu speichern und die Summe zu berechnen und durch die Anzahl der Datumspunkte zu dividieren, sobald ein neuer Datumspunkt angekommen ist. Es ist jedoch möglich, einfach den kumulativen Mittelwert zu aktualisieren, wenn ein neuer Wert xi & sub1; verfügbar wird, unter Verwendung der Formel: Somit ist der aktuelle kumulative Durchschnitt für einen neuen Bezugspunkt gleich dem vorherigen kumulativen Durchschnitt plus der Differenz zwischen dem letzten Datumspunkt und dem Wert Vorherigen Durchschnitt geteilt durch die Anzahl der bisher erhaltenen Punkte. Wenn alle Nullpunkte ankommen (i N), wird der kumulative Mittelwert dem Enddurchschnitt entsprechen. Die Ableitung der kumulativen Durchschnittsformel ist unkompliziert. Mit Hilfe dieser Gleichung für CA i 1 ergibt sich: Gewichteter gleitender Durchschnitt Bearbeiten Ein gewichteter Durchschnitt ist ein beliebiger Durchschnitt, der Multiplikationsfaktoren hat, um unterschiedliche Gewichte für Daten an verschiedenen Positionen im Probenfenster zu erhalten. Mathematisch ist der gleitende Durchschnitt die Faltung der Nullpunkte mit einer festen Gewichtungsfunktion. Eine Anwendung entfernt die Pixelisierung aus einem digitalen grafischen Bild. In der technischen Analyse der Finanzdaten hat ein gewichteter gleitender Durchschnitt (WMA) die spezifische Bedeutung von Gewichten, die in der arithmetischen Progression abnehmen. 2 In einem n-day WMA hat der letzte Tag das Gewicht n. Die zweitletzte n 16087221601, etc. bis zu einem. Datei: Gewichtete gleitende Durchschnittsgewichte N15.png Wenn die WMA über aufeinanderfolgende Werte berechnet wird, ist die Differenz zwischen den Zählern von WMA M 1 und WMA M np M 1 1608722160 p M 16087221601608722160 p M 8722n1. Bezeichnet man die Summe p M 160160160160 p M 8722 n 1 mit der Summe M. Dann zeigt die Grafik rechts, wie die Gewichte von höchstem Gewicht für die letzten Datumspunkte bis auf Null abnehmen. Sie kann mit den im folgenden exponentiellen gleitenden Durchschnitt verglichen werden. Exponentieller gleitender Durchschnitt Bearbeiten Ein exponentieller gleitender Durchschnitt (EMA), der auch als exponentiell gewichteter gleitender Durchschnitt (EWMA) bezeichnet wird, ist ein Typ eines unendlichen Impulsantwortfilters, der exponentiell abnehmende Gewichtungsfaktoren anwendet. Die Gewichtung für jeden älteren Nullpunkt nimmt exponentiell ab und erreicht niemals Null. Die Grafik rechts zeigt ein Beispiel für die Gewichtsabnahme. Die EMA für eine Reihe Y kann rekursiv berechnet werden: Der Koeffizient repräsentiert den Grad der Gewichtungsabnahme, einen konstanten Glättungsfaktor zwischen 0 und 1. Je höher die Anzahl der älteren Beobachtungen, desto schneller. Alternativ kann in Form von N Zeitperioden ausgedrückt werden, wobei 1601602 (N & sub1;) Scriptfehler Scriptfehler 91 Zitat 93 benötigt wird. Wenn zum Beispiel N 16016019 zu 1601600.1 äquivalent ist, wird die Halbwertszeit der Gewichte (das Intervall, Die Gewichte um einen Faktor von zwei abnehmen) ungefähr N 2.8854 (innerhalb von 1, wenn N 160gt1605). Yt ist der Wert zu einer Zeitperiode t. S t ist der Wert der EMA zu einem beliebigen Zeitpunkt t. S 1 ist undefiniert. S 1 kann auf verschiedene Weise initialisiert werden, am häufigsten durch S 1 bis Y 1. Obwohl andere Techniken existieren, wie etwa das Setzen von S 1 auf einen Durchschnitt der ersten 4 oder 5 Beobachtungen. Die Prominenz der S 1 - Initialisierungswirkung auf den resultierenden gleitenden Durchschnitt hängt von kleineren Werten ab, was die Wahl von S 1 relativ wichtiger macht als größere Werte, da eine höhere Diskontierung älterer Beobachtungen schneller erfolgt. Diese Formulierung ist nach Hunter (1986). 4 Durch wiederholte Anwendung dieser Formel für verschiedene Zeiten können wir schließlich S t als gewichtete Summe der Nullpunkte Y t schreiben. Als: Ein alternativer Ansatz von Roberts (1959) verwendet Y t anstelle von Y t 87221. 5 Diese Formel kann auch in den technischen Analysenausdrücken wie folgt ausgedrückt werden und zeigt, wie die EMA auf den letzten Datumspunkt zu, aber nur um einen Anteil der Differenz (jedesmal) geht: Dies ist eine unendliche Summe mit abnehmenden Terme. Die N Perioden in einer N-Day EMA geben nur den Faktor an. N ist kein Stopppunkt für die Berechnung in der Art, wie sie in einem SMA oder WMA ist. Für ausreichend große N. Die ersten N Datenpunkte in einer EMA repräsentieren etwa 86 des Gesamtgewichts bei der Berechnung: 6 Die Leistungsformel oben gibt einen Startwert für einen bestimmten Tag an, wonach die zuerst gezeigte aufeinanderfolgende Tageformel angewendet werden kann. Die Frage, wie weit zurück für einen Anfangswert gehen muss, hängt im schlimmsten Fall von den Daten ab. Große Preiswerte in alten Daten werden sich auf die Gesamtmenge auswirken, selbst wenn ihre Gewichtung sehr gering ist. Wenn die Preise kleine Variationen haben, dann kann nur die Gewichtung berücksichtigt werden. Das Gewicht, das durch Stoppen nach k Termonen weggelassen wird, liegt außerhalb des Gesamtgewichts. Um beispielsweise 99,9 des Gewichts zu haben, setzen Sie das obige Verhältnis auf 0,1 und lösen Sie für k. Für dieses Beispiel (99,9 Gewicht). Geänderter gleitender Durchschnitt Bearbeiten Ein modifizierter gleitender Durchschnitt (MMA), ein laufender gleitender Durchschnitt (RMA) oder ein glatter gleitender Durchschnitt ist definiert als: Anwendung zur Messung der Computerleistung Bearbeiten Einige Computerleistungsmetriken, z. B. Die durchschnittliche Prozesswarteschlangenlänge oder die durchschnittliche CPU-Auslastung eine Form des exponentiellen gleitenden Durchschnitts verwenden. Hier wird als Funktion der Zeit zwischen zwei Messungen definiert. Ein Beispiel für einen Koeffizienten, der dem aktuellen Messwert ein größeres Gewicht verleiht, und ein geringeres Gewicht für die älteren Messungen ist beispielsweise ein 15-Minuten-Durchschnitt L einer Prozesswarteschlangenlänge Q. Gemessen alle 5 Sekunden (Zeitdifferenz beträgt 5 Sekunden), wird berechnet als Andere Gewichtungen Bearbeiten Andere Gewichtungssysteme werden gelegentlich verwendet 8211 zum Beispiel im Aktienhandel mit einem Volumengewicht wird jedes Zeitintervall proportional zum Handelsvolumen gewichtet. Eine weitere Gewichtung, die von Aktuaren verwendet wird, ist Spencers 15-Point Moving Average 11 (ein mittlerer gleitender Durchschnitt). Die symmetrischen Gewichtungskoeffizienten sind -3, -6, -5, 3, 21, 46, 67, 74, 67, 46, 21, 3, -5, -6, -3. Außerhalb der Finanzwelt haben gewichtete Laufwege viele Formen und Anwendungen. Jede Gewichtungsfunktion oder Kernel hat seine eigenen Eigenschaften. In der Technik und Wissenschaft ist die Frequenz und das Phasenverhalten des Filters oft wichtig, um die gewünschten und unerwünschten Verzerrungen zu verstehen, die ein bestimmter Filter auf die Daten anwenden wird. Ein Mittel nicht nur glätten die Daten. Ein Mittelwert ist eine Form des Tiefpaßfilters. Die Auswirkungen des jeweiligen Filters sollten verstanden werden, um eine geeignete Wahl zu treffen. An dieser Stelle diskutiert die französische Version dieses Artikels die spektrale Wirkung von 3 Arten von Mitteln (kumulativ, exponentiell, Gaussian). Moving Median Edit Aus statistischer Sicht ist der gleitende Durchschnitt, wenn er zur Schätzung der zugrunde liegenden Tendenz in einer Zeitreihe verwendet wird, anfällig für seltene Ereignisse wie schnelle Schocks oder andere Anomalien. Eine robustere Schätzung des Trends ist der einfache sich bewegende Median über n Zeitpunkte: wo der Median gefunden wird, indem man beispielsweise die Werte innerhalb der Klammern sortiert und den Wert in der Mitte findet. Für größere Werte von n. Kann der Median effizient berechnet werden, indem eine indexierbare Skiplist aktualisiert wird. 12 Statistisch gesehen ist der gleitende Durchschnitt optimal, um den zugrunde liegenden Trend der Zeitreihe wiederherzustellen, wenn die Schwankungen um den Trend normal verteilt sind. Die Normalverteilung weist jedoch keine sehr hohe Wahrscheinlichkeit auf sehr große Abweichungen von der Tendenz hin, was erklärt, warum diese Abweichungen einen unverhältnismäßig großen Einfluss auf die Trendschätzung haben werden. Es kann gezeigt werden, dass, wenn die Fluktuationen stattdessen angenommen werden, dass Laplace verteilt ist. Dann ist der bewegliche Median statistisch optimal. 13 Für eine gegebene Varianz stellt die Laplace-Verteilung bei seltenen Ereignissen höhere Wahrscheinlichkeit als die normale, was erklärt, warum der bewegte Median Stöße besser toleriert als der bewegte Mittelwert. Wenn der einfache sich bewegende Median oben zentriert ist, ist die Glättung identisch mit dem Medianfilter, der Anwendungen zum Beispiel in der Bildsignalverarbeitung aufweist. Siehe auch Bearbeiten Dieser Artikel enthält eine Referenzliste. Aber seine Quellen bleiben unklar, weil es unzureichende Inlinezitationen hat. Bitte helfen Sie, diesen Artikel durch präzisere Zitate zu verbessern. 32 (Februar 2010) 2.1 Gleitende Durchschnittsmodelle (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit Mittelwert 0 und gleicher Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Terme in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt überstehendes N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Das Beispiel ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Plots des theoretischen ACFs. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Das Beispiel ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q existieren. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 10,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten solche Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter bezeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10 zum Mittelwert 10. Simulationsvorgaben bedeuten 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Variante: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck 1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass, durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Wir setzen dann die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungsmodell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vervielfachen (unendlich) in der Größe zunehmen, Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Reihen, die (phi1lt1) erfordert, andernfalls divergiert die Reihe. NavigationMoving Durchschnitt In der Statistik. Ein gleitender Durchschnitt. Auch Rolling Average genannt. Bewegter Mittelwert. Walzmittel. Gleitenden zeitlichen Mittelwert. Oder laufender Durchschnitt. Ist ein Typ eines Finite-Impulse-Response-Filters, der verwendet wird, um einen Satz von Datenpunkten zu analysieren, indem eine Reihe von Mittelwerten von verschiedenen Teilmengen des vollständigen Datensatzes erzeugt wird. Bei einer Reihe von Zahlen und einer festen Teilmengengröße wird das erste Element des gleitenden Mittelwertes erhalten, indem der Durchschnitt der anfänglichen festen Teilmenge der Zahlenreihe genommen wird. Dann wird die Teilmenge durch Vorwärtsschieben modifiziert, dh ohne die erste Zahl der Reihe und schließt die nächste Zahl ein, die der ursprünglichen Teilmenge in der Reihe folgt. Dies erzeugt eine neue Teilmenge von Zahlen, die gemittelt wird. Dieser Vorgang wird über die gesamte Datenreihe wiederholt. Die graphische Linie, die alle (festen) Mittel verbindet, ist der gleitende Durchschnitt. Ein gleitender Durchschnitt ist ein Satz von Zahlen, von denen jeder der Mittelwert der entsprechenden Teilmenge eines größeren Satzes von Bezugspunkten ist. Ein gleitender Durchschnitt kann auch ungleiche Gewichte für jeden Datumswert in der Teilmenge verwenden, um bestimmte Werte in der Teilmenge hervorzuheben. Ein gleitender Durchschnitt wird häufig mit Zeitreihendaten verwendet, um kurzfristige Fluktuationen auszugleichen und längerfristige Trends oder Zyklen hervorzuheben. Die Schwelle zwischen Kurzzeit und Langzeit hängt von der Anwendung ab, und die Parameter des gleitenden Durchschnitts werden entsprechend eingestellt. Zum Beispiel wird es oft in der technischen Analyse von Finanzdaten, wie Aktienkurse verwendet. Renditen oder Handelsvolumina. Es wird auch in der Volkswirtschaft verwendet, um das Bruttoinlandsprodukt, die Beschäftigung oder andere makroökonomische Zeitreihen zu untersuchen. Mathematisch ist ein gleitender Durchschnitt eine Art von Faltung und kann daher als ein Beispiel eines bei der Signalverarbeitung verwendeten Tiefpassfilters betrachtet werden. Bei Verwendung mit Nicht-Zeitreihendaten filtert ein gleitender Durchschnitt höherfrequente Komponenten ohne irgendeine spezifische Verbindung zur Zeit, obwohl typischerweise eine Art von Anordnung impliziert wird. Vereinfacht betrachtet, kann es als eine Glättung der Daten betrachtet werden. Einfacher gleitender Durchschnitt Edit In Finanzanwendungen ist ein einfacher gleitender Durchschnitt (SMA) der ungewichtete Mittelwert der vorangegangenen n Datenpunkte. Allerdings wird in der Wissenschaft und Technik der Mittelwert normalerweise aus einer gleichen Anzahl von Daten auf beiden Seiten eines zentralen Wertes genommen. Dies stellt sicher, dass Variationen in dem Mittel mit den Variationen in den Daten ausgerichtet sind, anstatt zeitlich verschoben zu werden. Ein Beispiel eines einfachen, gleich gewichteten laufenden Mittelwertes für eine n-Tage-Stichprobe des Schlusskurses ist der Mittelwert der vorangegangenen n-Tage-Schlusskurse. Wenn diese Preise dann die Formel ist, wird bei der Berechnung aufeinanderfolgender Werte ein neuer Wert in die Summe und ein alter Wert fällt aus, dh eine vollständige Summation jedes Mal ist für diesen einfachen Fall unnötig, Der ausgewählte Zeitraum hängt von der Art der Bewegung von Wie kurz, mittelfristig oder langfristig. Finanziell kann das gleitende Durchschnittsniveau als Unterstützung in einem steigenden Markt oder Widerstand in einem fallenden Markt interpretiert werden. Wenn die verwendeten Daten nicht um den Mittelpunkt zentriert sind, liegt ein einfacher gleitender Durchschnitt hinter dem letzten Datumspunkt um die Hälfte der Probenbreite zurück. Ein Merkmal der SMA ist, dass, wenn die Daten eine periodische Fluktuation haben, dann das Anwenden eines SMA dieser Periode diese Variation beseitigen wird (der Durchschnitt, der immer enthält.) Ein SMA kann auch überproportional beeinflusst werden, indem alte Datenpunkte wegfallen oder neue Daten hereinkommen Ein vollständiger Zyklus). Aber ein vollkommen regelmäßiger Zyklus kommt selten vor. 1 Für eine Reihe von Anwendungen ist es vorteilhaft, die Verschiebung zu vermeiden, die durch die Verwendung nur vergangener Daten induziert wird. Daher kann ein zentraler gleitender Durchschnitt berechnet werden, wobei Daten verwendet werden, die beiderseits des Punktes in der Reihe gleich beabstandet sind, wo der Mittelwert berechnet wird. Dies erfordert die Verwendung einer ungeraden Anzahl von Bezugspunkten im Probenfenster. Kumulierter gleitender Durchschnitt Bearbeiten In einem kumulativen gleitenden Durchschnitt. Kommen die Daten in einem geordneten Datenstrom an und der Statistiker möchte den Durchschnitt aller Daten bis zum aktuellen Bezugspunkt erhalten. Zum Beispiel kann ein Anleger den durchschnittlichen Preis aller Aktien-Transaktionen für eine bestimmte Aktie bis zur aktuellen Zeit wollen. Bei jeder neuen Transaktion kann der Durchschnittspreis zum Zeitpunkt der Transaktion für alle Transaktionen bis zu diesem Zeitpunkt unter Verwendung des kumulativen Durchschnitts, typischerweise eines gleich gewichteten Durchschnitts der Sequenz von i Werten x 1, berechnet werden. X i bis zur aktuellen Zeit: Die brute-force Methode, um dies zu berechnen, wäre, alle Daten zu speichern und die Summe zu berechnen und durch die Anzahl der Datumspunkte zu dividieren, sobald ein neuer Datumspunkt angekommen ist. Es ist jedoch möglich, einfach den kumulativen Mittelwert zu aktualisieren, wenn ein neuer Wert xi & sub1; verfügbar wird, unter Verwendung der Formel: Somit ist der aktuelle kumulative Durchschnitt für einen neuen Bezugspunkt gleich dem vorherigen kumulativen Durchschnitt plus der Differenz zwischen dem letzten Datumspunkt und dem Wert Vorherigen Durchschnitt geteilt durch die Anzahl der bisher erhaltenen Punkte. Wenn alle Nullpunkte ankommen (i N), wird der kumulative Mittelwert dem Enddurchschnitt entsprechen. Die Ableitung der kumulativen Durchschnittsformel ist unkompliziert. Mit Hilfe dieser Gleichung für CA i 1 ergibt sich: Gewichteter gleitender Durchschnitt Bearbeiten Ein gewichteter Durchschnitt ist ein beliebiger Durchschnitt, der Multiplikationsfaktoren hat, um unterschiedliche Gewichte für Daten an verschiedenen Positionen im Probenfenster zu erhalten. Mathematisch ist der gleitende Durchschnitt die Faltung der Nullpunkte mit einer festen Gewichtungsfunktion. Eine Anwendung entfernt die Pixelisierung aus einem digitalen grafischen Bild. In der technischen Analyse der Finanzdaten hat ein gewichteter gleitender Durchschnitt (WMA) die spezifische Bedeutung von Gewichten, die in der arithmetischen Progression abnehmen. 2 In einem n-day WMA hat der letzte Tag das Gewicht n. Die zweitletzte n 16087221601, etc. bis zu einem. Datei: Gewichtete gleitende Durchschnittsgewichte N15.png Wenn die WMA über aufeinanderfolgende Werte berechnet wird, ist die Differenz zwischen den Zählern von WMA M 1 und WMA M np M 1 1608722160 p M 16087221601608722160 p M 8722n1. Bezeichnet man die Summe p M 160160160160 p M 8722 n 1 mit der Summe M. Dann zeigt die Grafik rechts, wie die Gewichte vom höchsten Gewicht für die letzten Datumspunkte auf Null abnehmen. Sie kann mit den im folgenden exponentiellen gleitenden Durchschnitt verglichen werden. Exponentieller gleitender Durchschnitt Bearbeiten Ein exponentieller gleitender Durchschnitt (EMA), der auch als exponentiell gewichteter gleitender Durchschnitt (EWMA) bezeichnet wird, ist ein Typ eines unendlichen Impulsantwortfilters, der exponentiell abnehmende Gewichtungsfaktoren anwendet. Die Gewichtung für jeden älteren Nullpunkt nimmt exponentiell ab und erreicht niemals Null. Die Grafik rechts zeigt ein Beispiel für die Gewichtsabnahme. Die EMA für eine Reihe Y kann rekursiv berechnet werden: Der Koeffizient repräsentiert den Grad der Gewichtungsabnahme, einen konstanten Glättungsfaktor zwischen 0 und 1. Je höher die Anzahl der älteren Beobachtungen, desto schneller. Alternativ kann in Form von N Zeitperioden ausgedrückt werden, wobei 1601602 (N & sub1;) Scriptfehler Scriptfehler 91 Zitat 93 benötigt wird. Wenn zum Beispiel N 16016019 zu 1601600.1 äquivalent ist, wird die Halbwertszeit der Gewichte (das Intervall, Die Gewichte um einen Faktor von zwei abnehmen) ungefähr N 2.8854 (innerhalb von 1, wenn N 160gt1605). Yt ist der Wert zu einer Zeitperiode t. S t ist der Wert der EMA zu einem beliebigen Zeitpunkt t. S 1 ist undefiniert. S 1 kann auf verschiedene Weise initialisiert werden, am häufigsten durch S 1 bis Y 1. Obwohl andere Techniken existieren, wie etwa das Setzen von S 1 auf einen Durchschnitt der ersten 4 oder 5 Beobachtungen. Die Prominenz der S 1 - Initialisierungswirkung auf den resultierenden gleitenden Durchschnitt hängt von kleineren Werten ab, was die Wahl von S 1 relativ wichtiger macht als größere Werte, da eine höhere Diskontierung älterer Beobachtungen schneller erfolgt. Diese Formulierung ist nach Hunter (1986). 4 Durch wiederholte Anwendung dieser Formel für verschiedene Zeiten können wir schließlich S t als gewichtete Summe der Nullpunkte Y t schreiben. Als: Ein alternativer Ansatz von Roberts (1959) verwendet Y t anstelle von Y t 87221. 5 Diese Formel kann auch in den technischen Analysenausdrücken wie folgt ausgedrückt werden und zeigt, wie die EMA auf den letzten Datumspunkt zu, aber nur um einen Anteil der Differenz (jedesmal) geht: Dies ist eine unendliche Summe mit abnehmenden Terme. Die N Perioden in einer N-Day EMA geben nur den Faktor an. N ist kein Stopppunkt für die Berechnung in der Art, wie sie in einem SMA oder WMA ist. Für ausreichend große N. Die ersten N Datenpunkte in einer EMA repräsentieren etwa 86 des Gesamtgewichts bei der Berechnung: 6 Die Leistungsformel oben gibt einen Startwert für einen bestimmten Tag an, wonach die zuerst gezeigte aufeinanderfolgende Tageformel angewendet werden kann. Die Frage, wie weit zurück für einen Anfangswert gehen muss, hängt im schlimmsten Fall von den Daten ab. Große Preiswerte in alten Daten werden sich auf die Gesamtmenge auswirken, selbst wenn ihre Gewichtung sehr gering ist. Wenn die Preise kleine Variationen haben, dann kann nur die Gewichtung berücksichtigt werden. Das Gewicht, das durch Stoppen nach k Termonen weggelassen wird, liegt außerhalb des Gesamtgewichts. Um beispielsweise 99,9 des Gewichts zu haben, setzen Sie das obige Verhältnis auf 0,1 und lösen Sie für k. Für dieses Beispiel (99,9 Gewicht). Geänderter gleitender Durchschnitt Bearbeiten Ein modifizierter gleitender Durchschnitt (MMA), ein laufender gleitender Durchschnitt (RMA) oder ein glatter gleitender Durchschnitt ist definiert als: Anwendung zur Messung der Computerleistung Bearbeiten Einige Computerleistungsmetriken, z. B. Die durchschnittliche Prozesswarteschlangenlänge oder die durchschnittliche CPU-Auslastung eine Form des exponentiellen gleitenden Durchschnitts verwenden. Hier wird als Funktion der Zeit zwischen zwei Messungen definiert. Ein Beispiel für einen Koeffizienten, der dem aktuellen Messwert ein größeres Gewicht verleiht, und ein geringeres Gewicht für die älteren Messungen ist beispielsweise ein 15-Minuten-Durchschnitt L einer Prozesswarteschlangenlänge Q. Gemessen alle 5 Sekunden (Zeitdifferenz beträgt 5 Sekunden), wird berechnet als Andere Gewichtungen Bearbeiten Andere Gewichtungssysteme werden gelegentlich verwendet 8211 zum Beispiel im Aktienhandel mit einem Volumengewicht wird jedes Zeitintervall proportional zum Handelsvolumen gewichtet. Eine weitere Gewichtung, die von Aktuaren verwendet wird, ist Spencers 15-Point Moving Average 11 (ein mittlerer gleitender Durchschnitt). Die symmetrischen Gewichtungskoeffizienten sind -3, -6, -5, 3, 21, 46, 67, 74, 67, 46, 21, 3, -5, -6, -3. Außerhalb der Finanzwelt haben gewichtete Laufwege viele Formen und Anwendungen. Jede Gewichtungsfunktion oder Kernel hat seine eigenen Eigenschaften. In der Technik und Wissenschaft ist die Frequenz und das Phasenverhalten des Filters oft wichtig, um die gewünschten und unerwünschten Verzerrungen zu verstehen, die ein bestimmter Filter auf die Daten anwenden wird. Ein Mittel nicht nur glätten die Daten. Ein Mittelwert ist eine Form des Tiefpaßfilters. Die Auswirkungen des jeweiligen Filters sollten verstanden werden, um eine geeignete Wahl zu treffen. An dieser Stelle diskutiert die französische Version dieses Artikels die spektrale Wirkung von 3 Arten von Mitteln (kumulativ, exponentiell, Gaussian). Moving Median Edit Aus statistischer Sicht ist der gleitende Durchschnitt, wenn er zur Schätzung der zugrunde liegenden Tendenz in einer Zeitreihe verwendet wird, anfällig für seltene Ereignisse wie schnelle Schocks oder andere Anomalien. Eine robustere Schätzung des Trends ist der einfache sich bewegende Median über n Zeitpunkte: wo der Median gefunden wird, indem man beispielsweise die Werte innerhalb der Klammern sortiert und den Wert in der Mitte findet. Für größere Werte von n. Kann der Median effizient berechnet werden, indem eine indexierbare Skiplist aktualisiert wird. 12 Statistisch gesehen ist der gleitende Durchschnitt optimal, um den zugrunde liegenden Trend der Zeitreihe wiederherzustellen, wenn die Schwankungen um den Trend normal verteilt sind. Die Normalverteilung weist jedoch keine sehr hohe Wahrscheinlichkeit auf sehr große Abweichungen von der Tendenz hin, was erklärt, warum diese Abweichungen einen unverhältnismäßig großen Einfluss auf die Trendschätzung haben werden. Es kann gezeigt werden, dass, wenn die Fluktuationen stattdessen angenommen werden, dass Laplace verteilt ist. Dann ist der bewegliche Median statistisch optimal. 13 Für eine gegebene Varianz stellt die Laplace-Verteilung bei seltenen Ereignissen höhere Wahrscheinlichkeit als die normale, was erklärt, warum der bewegte Median Stöße besser toleriert als der bewegte Mittelwert. Wenn der einfache sich bewegende Median oben zentriert ist, ist die Glättung identisch mit dem Medianfilter, der Anwendungen zum Beispiel in der Bildsignalverarbeitung aufweist. Siehe auch Bearbeiten Dieser Artikel enthält eine Referenzliste. Aber seine Quellen bleiben unklar, weil es unzureichende Inlinezitationen hat. Bitte helfen Sie, diesen Artikel durch präzisere Zitate zu verbessern. 32 (Februar 2010)

No comments:

Post a Comment